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SUMMARY 

This paper presents a boundary element formulation employing a penalty function technique for two- 
dimensional steady thermal convection problems. By regarding the convective and buoyancy force terms in 
Navier-Stokes equations as body forces, the standard elastostatics analysis can be extended to  solve the 
Navier-Stokes equations. In a similar manner, the standard potential analysis is extended to solve the energy 
transport equation. Finally, some numerical results are included, for typical natural convection problems, in 
order to demonstrate the efficiency of the present method. 
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INTRODUCTION 

Thermal convection phenomena are of importance in many engineering and natural science 
problems. In particular, the buoyancy-driven flow of an incompressible viscous fluid under 
heating, the natural convection problem, is described by the Navier-Stokes and energy transport 
equations, consisting of a coupled set of non-linear equations. Because of difficulties in obtaining 
analytical solutions of the problem, several numerical formulations based on finite difference and 
finite element techniques have been developed and are widely used.’,’ 

More recently, procedures utilizing the boundary element method have also been derived for 
natural convection problems. These include velocity-pre~sure,~.~ stream funct ion-~ort ic i ty~,~ and 
velocity-vorticity7 formulations of the Navier-Stokes equations. Accurate solutions were 
obtained for classical problems such as the square cavity, for moderate Reynolds numbers 
(Re 6 100) and Rayleigh numbers (R ,  < lo4). 

The authors recently proposed a ‘pseudo-body force’ formulation for steady viscous flow 
problems.8 Through the use of a penalty function technique, an analogy was made between the 
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Navier-Stokes equations and the Navier equations of elastostatics. A boundary integral equation 
was then obtained, employing Kelvin’s fundamental ~ o l u t i o n , ~  which considers the diffusive part of 
the process by means of boundary integrals alone. The convective terms, however, are regarded as 
pseudo-body forces and their influence computed iteratively by discretizing the domain of the 
problem into cells, similar to finite elements. The accurate evaluation of the convective terms plays 
a key role in the formulation, and the performance of different techniques for that end are 
compared in Reference 8. 

This paper presents an extension of the pseudo-body force formulation to two-dimensional 
steady thermal convection problems. The Navier-Stokes equations are considered under the 
Boussinesq approximation and are formulated in terms of the primitive variables, velocity and 
pressure, although the pressure is later on eliminated through a penalty function technique. 

Numerical results are presented for two typical natural convection problems, the square cavity 
flow and the flow between two horizontal, concentric cylinders. These results compare well with 
previous solutions obtained by using different numerical techniques. 

THEORY 

Basic equations 

In this work, the flow is assumed to be steady, incompressible and two-dimensional. Boussinesq’s 
approximation is employed; that is, the fluid is assumed to have constant properties except for the 
generation of buoyancy forces. If a Cartesian co-ordinate system is selected such that gravity forces 
work on the x2 direction, the basic equations of natural convection are described by using a tensor 
notation as follows: 

Continuity equation 

Nauier-Stokes equations 

ujui, j  = - p,i + Pr(ui.j + v ~ , ~ ) , ~  + 6,,RaPr8; 

Energy transport equation 

These equations were made dimensionless by choosing L (spacing between a hot wall (temperature 
TH) and a cold wall (T,)) and L2/a(a, thermal diffusivity) as scale factors for length and time 
respectively. The temperature 0 is expressed by 0 = (T  - Tc)/(TH - T,). Components of the 
velocity vector are represented by ui; p ,  Pr and Ra indicate pressure, Prandtl number (= v/a; 
v, kinematic viscosity) and Rayleigh number (= gjL3(TH - T,)/va; g, gravitational constant; 
j, coefficient of volumetric expansion) respectively. A comma stands for space partial 
derivatives-i.e., vj,i = dvj/dxi-and di j  is the Kronecker delta symbol. When the same 
subscript appears twice in a term, the summation rule should be applied. 

In order to evaluate the pressure term in equation (2) ,  a penalty function technique is employed; 
that is, pressure is approximated as 

p = - (4) 
where 2 is a penalty parameter. Since the pressure p has a finite value, taking a value of A which 
approaches infinity will make ui,i approach zero, enforcing in the limit the automatic satisfaction of 
the continuity equation (1). In the actual numerical calculations, a large but finite value is used for 
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1, so the analysis is carried out taking a slight compressibility into consideration. By substituting 
equation (4) into equation (2), the following equations are obtained: 

(A + Pr)vj,ji + Prvi . j j  = v j q j  - dZi Ra Pro .  ( 5 )  

On the other hand, under conditions of homogeneity and isotropy, the basic equation of 
elastostatics, which is the Navier equation, is as follows: 

(x + p ’ ) ~ .  J .J1  .. + p’u.  l , J J  .. = - b. 1 9  (6) 
where ui and bi stand for the components of displacement and body force vectors respectively; 
1’ and p’ are Lamt’s constants. 

On comparing equations (5) and (6), it will be noticed that they have similar left sides. Thus 
equation (5) can be treated analogously to a standard elastostatic problem, if the right-side terms 
are regarded as pseudo-body forces. 

Furthermore, regarding the convective terms of the energy transport equation (3) as pseudo- 
source terms of a Poisson equation, 

0 YJJ . . = p  ’ (7) 
an analogy can also be made between equation (3) and a standard potential analysis. 

Boundary integral formulations 

the weighted residual statement of equation (6); i.e., 
Initially, boundary integral formulations of equation (6) will be reviewed. The starting point is 

n 

[(A’ + p ’ ) ~ ~ , ~ ~  + p ’ ~ ~ , ~ ~  + bi]uZidS2 = 0.  J*  
The weighting functions uti are selected to satisfy Navier’s equation in an infinite elastic medium 
with a discrete singularity, as follows: 

(1 + p’)u,*j,ji + p’ufi,jj + dkid(X,y) = 0, (9) 
where 6(x ,  y) is a Dirac delta function. 

form for plane strain problems: 
These fundamental solutions utf are known as Kelvin’s solutions9 and have the following 

- 1  
8n(l - v’)P‘ UZf = “ 3  - 4v’) In rd, ,  - 

The tractions ttf corresponding to uZf are expressed by 

where r = r(y, x) represents the distance between the load point y and the field point x, and nk 
represents the direction cosines of the outward normal to the boundary of the body. v’ indicates 
Poisson’s ratio, which can be related to Lamt’s constants as follows: 

v’ = 1’/2(1’ + p’). (121 
Integrating by parts and applying Gauss’s divergence theorem twice to equation (8), the following 
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equations will be obtained: 

c k l ( Y ) u l ( Y )  + jr tk*1(Y,Yl)Ul(Yl)dT(Yl) 

- J-* @f(Y, Y’)t l(Y’) dr(Y’) = U X Y ,  4 b d - 4  dQ (4. I* (13) 

The coefficients ck , (Y)  can be determined by the position of the source point y .  For example, 
C d ~ ) = b ; ~ ~  for YEQ, c k f ( Y ) = 6 k f / 2  for yEI- (the tangent plane at y is continuous in this case). 

ui = Ui on ru, 
The boundary conditions of the problem are as follows: 

t i =  ti on r t=r-ru,  (14) 

where the bar indicates a prescribed value. 
In standard elastostatic analysis, the boundary integral equations (13) are solved numerically for 

the boundary conditions (14) and known body forces bi. In the present viscous flow analysis, bi 
includes the unknown velocity vector u i ,  its derivatives and the temperature 0. Therefore an 
iterative technique, which will be discussed in the next section, must be employed. 

In order to evaluate the velocity derivatives of the convective terms at the internal points, the 
following boundary integral equations, which can be obtained for ~ € 0  by differentiating 
equation (13) with respect to the co-ordinates of the source point y,  were applied: 

tk*lm(Y, Y’)’I(Y’) dr (Y’) 

where 

Similarly, a boundary integral equation equivalent to Poisson’s equation (7) can be obtained as 
follows: 

C(Y) Q(Y) + Jr q* ( Y 3  YO 0(YO d r  (Y‘) - Q* ( Y ,  Y ’ ) d Y ’ )  dl- (Y’) = - Q* (Y ,  X)P(X) dQ (4 3 (1 7) 

where q = d$/dn is the normal flux and 

The temperature derivatives of the convective terms in the energy transport equation (3) are 
evaluated at the internal points by the following equations, which can be obtained by 
differentiating equation (17) with respect to the co-ordinates of the point y: 

c ( Y ) O , m ( Y )  + jr q~(Y,y’ )~(y’ )dr (y’ )  
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where 

It should be noted that the pseudo-source term p includes not only the unknown temperature 
derivatives but also the velocities. This term, together with the buoyancy term in equation (5) ,  
couple the present equation with the Navier-Stokes equations. The iterative technique for solution 
of the coupled non-linear system of equations is described in the next section. 

NUMERICAL IMPLEMENTATION 

Numerical discretization 

The numerical implementation of equation (13) will be described first. In order to solve the 
boundary integral equation (1 3), the boundary and domain of the region under study are divided 
into a number of small elements and cells respectively. Linear boundary elements and triangular 
linear internal cells were employed in this work. Following a standard collocation procedure,8 a 
system of algebraic equations is obtained, which can be written in matrix form as 

CHI {v} = CGl (t) + [Cl {f l ,  (21) 
where {v} and {t} represent velocities and tractions at the boundary nodal points respectively, and 
{f} indicates the pseudo-body force terms at the internal nodal points; [HI, [GI and [C] are 
influence matrices, the coefficients of which can be determined by integrating the fundamental 
solutions and interpolation functions over the boundary elements or the internal cells. 

Taking the boundary conditions (14) into consideration, the matrix equation (21) can be 
modified into the following system of simultaneous equations 

CAI {x} = {Y) + CCl {f l .  (22) 
If the pseudo-body force vector {f} is known, the unknown vector {x} can be obtained by a direct 
solution of system (22). 

The velocity vector {v} and its derivative vector {dv} at internal nodal points are calculated by 
the following equations, obtained from boundary integral equations (13) and (15): 

where [Af], (yf}, [Cf], {Adf}, (ydf} and [Cdf] represent known vectors and matrices calculated 
from geometric data and boundary conditions. These equations include not only the unknown 
vector {x} but also vector {f}, which depends on the vectors {v} and {dv}. Therefore iterative 
techniques must be employed in order to solve equation (22). 

In a similar manner, the boundary integral equations (1 7) and (19) for the energy transport 
equation can be written in the following matrix form: 

[At1 {Xt} = {yt} + Cctl {ft}, 

{e )  = [Aft] {xt} + {yft} + [Cft] {ft), 

{de} = [Adft]{xt) + {ydft} + [Cdft]{ft}, 

where {xt} is the unknown value at the boundary nodal points, { O }  is the temperature value at the 
internal nodal points, {de} are the derivatives of temperature at the internal nodal points, (ft} are 
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the pseudo-source terms at the internal nodal points, and the other terms are known vectors and 
matrices calculated from geometric data and boundary conditions. 

As {ft} depends on the vector {do}, iterative techniques must also be applied to solve 
equation (25). 

Iteratiue techniques 

In order to analyse thermal convection problems, equations (22) and (25) must be solved 
simultaneously. On the other hand, iterative techniques must be applied to solve each equation, as 
discussed in the previous subsection. Moreover, the pseudo-body force vector {f} includes the 
temperature vector { O } ,  and the pseudo-source vector {ft} includes the velocity vector {v}; that 
is, equations (22) and (25) are coupled with complex relations. 

The iterative technique employed in this work comprises the following steps: 

1. Assume values of velocities, their derivatives and the derivative of temperature at the internal 
nodal points, allowing vector {ft} to be calculated. 

2. Solve the system of equations (25), evaluating the unknown vector {xt}. 
3. With vectors {ft} and {xt} obtained in the previous steps, compute the temperature {0}  at the 

internal nodal points by using equation (26). 
4. With vectors (01, (v} and {dv}, calculate vector {f} at internal nodal points. 
5. Solve the system of equations (22), evaluating the unknown vector {x). 
6. With vectors {x} and {f}, recompute the velocity vector {v} and its derivatives {dv} at the 

internal nodal points by using equations (23) and (24). 
7. Examine the convergence of (v}, {dv} and { O }  at the internal nodal points. 
8. If the results are not convergent, use the updated values of velocities, their derivatives and 

temperature at the internal nodal points to restart from the second step. 

During the iteration steps, all matrices and some vectors which appear in equations (22)-(27) are 
kept constant. In particular, matrices [A] and [At] are constant during all the iterations, so their 
inversion is performed only once. 

NUMERICAL RESULTS 

Initially, the present formulation is applied to the square cavity flow problem, which is a typical 
benchmark problem in natural convection. Geometry and boundary conditions for temperature 
are shown in Figure 1. Non-slip boundary conditions (i.e., u = u = 0 along all the walls) are applied 
to the velocities. The discretization used is shown in Figure 2 and the corner points are treated as 
double nodesg in order to apply the boundary conditions for temperature. 

The following results are compared in Table I with an accurate, benchmark FDM solution,1° for 
Prandtl number Pr = 0.7 and Rayleigh numbers Ra = lo3 and lo4: 

(1) average Nusselt number Nu = J A  a / a x  I x  = dy; 
(2) maximum and minimum local Nusselt numbers at the hot wall and their locations; 
(3) maximum vertical velocity u,,, on the horizontal mid-plane and its location; 
(4) maximum horizontal velocity u,,, on the vertical mid-plane and its location. 

In addition, the flow and temperature fields are plotted in Figures 3 and 4 for Ra = lo3 and lo4 
respectively. These results show a very good agreement with previously published numerical 
solutions. 

One can notice from Figure 2 that the discretization employed is rather coarse. As a comparison, 
we mention that the FDM solution from Reference 10 utilized a 41 x 41 grid; i.e., 1681 nodal 
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Figure 1. Geometry and temperature boundary conditions for square cavity 

Figure 2. Discretization of square cavity (132 boundary nodes, 169 internal nodes) 

Table I. Results of the cavity flow problem 

Ra 103 104 

Present Reference 
work 10 

Present Reference 
work 10 

- 

Nu 1.114 1.118 2.219 2.238 

Numalt 1.489 1.506 
Y 0.088 0.086 

3.484 3.527 
0.147 0.143 

Numi, 0697 0.69 1 
Y 1 1 

0.610 0.586 
1 1 

Umax 3.654 3.657 
Y 0.819 0.814 

15.399 16.178 
0.819 0.823 

Vmax 3.703 3.702 
X 0.181 0.178 

19.782 19.643 
0.113 0.1 19 
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(a) (b) 

Figure 3.  Results of the cavity flow problem (Ra = lo3, Pr = 0.71): (a) velocity distribution; (h)  isothermal lines 

Figure 4. Results of the cavity flow problem (Ra= lo4, Pr =0.71): (a) velocity distribution; (b) isothermal lines 

points. The present discretization was also applied to the cavity problem for a Rayleigh number 
Ra = lo5, but the solution failed to converge, indicating that more degrees of freedom are 
necessary for such a large Ra value. 

Next, this formulation was applied to study the natural convection in the annulus between 
horizontal concentric cylinders, which is also a typical problem with a more complicated geometry. 
Non-slip conditions are also assumed and the boundary conditions for temperature are T = TH 
and T,(T, > T,) on the inner and outer cylinder walls respectively. 

Taking symmetry into consideration, only half the domain needs to be discretized, as shown in 
Figure 5. The computer program developed treats symmetry by a reflection and condensation 
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T=T c 

Figure 5. Discretization and temperature boundary conditions for concentric cylinders (46 boundary nodes, 
147 internal nodes) 

technique, such that no discretization of the symmetry axes is necessary.' Finally, the flow and 
temperature fields are shown in Figure 6 for Ra = lo3, Pr = 0.7 and LIDi = 0.8 (Di, diameter of 
inner cylinder). These results are also in good agreement with previously published solutions." 

All calculations were carried out by using a value of lo5 for the penalty parameter 2. In order to 
achieve convergence, an under-relaxation technique was employed in the solution of the system of 
algebraic equations. 

CONCLUSIONS 

A boundary element formulation with a penalty function technique was developed for steady 
thermal convection and applied to typical natural convection problems; that is, the square cavity 
flow and the flow between concentric cylinders. The results obtained were in close agreement with 
previously published numerical solutions. The present formulation is now being extended to deal 
with three-dimensional natural convection problems, the results of which will be reported in a 
future paper. 
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Figure 6 .  Velocity distribution and isothermal lines for flow between concentric cylinders (Ra = lo3, Pr = 0.7, LIDi = 0.8) 

ACKNOWLEDGEMENTS 

This work was developed while two of the authors (K. Kitagawa and L. C. Wrobel) were visiting 
researchers at the Computational Mechanics Institute, Southampton, U.K. Financial support 
from the Toshiba Corporation, Japan and CAPES/ME, Brazil is gratefully acknowledged. 

REFERENCES 

1. R. W. Lewis and K. Morgan (eds), Numerical Methods in Thermal Problems, Vol. 4, Pineridge Press, Swansea, 1985. 
2. C. Taylor et al. (eds), Numerical Methods in Laminar and Turbulent Flow, Vol. 4 ,  Pineridge Press, Swansea, 1985. 
3. T. Kuroki, K. Onishi and N. Tosaka, ‘Thermal fluid flow with velocity formulation using boundary elements and 

penalty function methods’, in C. A. Brebbia and G. Maier (eds), Boundary Elemenis V I I ,  Springer, Berlin, 1985, 

4. N. Tosaka and N. Fukushima, ‘Integral equation analysis of laminar natural convection problems’, in M. Tanaka and 
C. A. Brebbia (eds), Boundary Elements V I I I ,  Springer, Berlin, 1986, pp. 803-812. 

5. K. Onishi, T. Kuroki and M. Tanaka, ‘An application of a boundary element method to natural convection’, Appl. 
Math. Modelling, 8, 383-390 (1984). 

6. K. Onishi, T. Kuroki and M. Tanaka, ‘Boundary element method for laminar viscous flow and convective diffusion 
problems’, in C.  A. Brebbia (ed.), Topics i n  Boundary Element Research, Vol. 2 ,  Springer, Berlin, 1985, pp. 209-229. 

pp. 2/107-2/1!4. 



NATURAL CONVECTION PROBLEMS 149 

7. P. Skerget, A. Alujevic and C. A. Brebbia, ‘BEM for laminar motion of isochoric viscous fluid‘, in J. J. Connor and 

8. K. Kitagawa, C. A. Brebbia, L. C. Wrobel and M. Tanaka, ‘Boundary element analysis of viscous flow by penalty 

9. C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques, Springer, Berlin, 1984. 

C. A. Brebbia (eds), BETECH 86, CM Publications, 1986, pp. 397-419. 

function formulation’, Eng. Anal., 3, 194-200 (1 986). 

10. G. de V. Davis and I. P. Jones, ‘Natural convection in a square cavity: a comparison exercise’, in R. W. Lewis et al. (eds), 

11. T. H. Kuehn and R. J. Goldstein, ‘An experimental and theoretical study of natural convection in the annulus between 
Numerical Methods in Thermal Problems, Vol. 2, Pineridge Press, Swansea, 1981, pp. 552-572. 

horizontal concentric cylinders’, J .  Fluid Mech., 74, 695-719 (1976). 




